Modeling of the Nervous System: From Modulation of Glutamatergic and Gabaergic Molecular Dynamics to Neuron Spiking Activity


Abstract— One of the fundamental characteristics of the brain is its hierarchical and temporal organization: scales in both space and time must be considered to fully grasp the system's underlying mechanisms and their impact on brain function. Complex interactions taking place at the molecular level regulate neuronal activity that further modifies the function of millions of neurons connected by trillions of synapses, ultimately giving rise to complex function and behavior at the system level. Likewise, the spatial complexity is accompanied by a complex temporal integration of events occurring at the second, minute and hour scales. These integrations across hierarchies of the nervous system are sufficiently complex to have impeded the development of routine multi-level modeling methodologies. The present study describes an example of our multiscale efforts to rise from the biomolecular level to the neuron level. We more specifically describe how we integrate biomolecular mechanisms taking place at glutamatergic and gabaergic synapses and integrate them to study the impact of these modifications on spiking activity of a CA1 pyramidal cell in the hippocampus.

I. INTRODUCTION

One of the fundamental characteristics of the brain lies in its high level of hierarchical organization. Indeed, complex molecular interactions at the level of receptors and channels regulate activity at the level of neurons and interactions between multiple populations of neurons ultimately give rise to complex neural system function and behavior. This spatial complexity takes place in the context of a composite temporal integration of multiple scales, ranging from microseconds, to hours or even longer. This organization, spanning many spatial and temporal dimensions, makes the task of modeling the central nervous system extremely complex.

Most attempts at neuronal multi-scale simulation start at a relatively high level of modeling, spanning mostly from cellular to systems levels. Simulators that allow multi-scale modeling of neural function include NEURON [1], GENESIS [2], NEST and CSIM [3]. While the majority of those efforts start at a relatively high level of modeling (cellular level), we propose to focus our attention starting at the molecular level and evolve towards the cellular and network scales to better understand how events occurring at the molecular level affect neuronal and network activities. To do so, we have developed the EONS (Elementary Objects of the Nervous System) / RENOMS (RHENOVIA Modeling and Simulation) modeling platforms.

In the present study, we illustrate the utilization of these platforms to generate perturbations at the molecular level on the kinetics of the NMDA receptor model and the GABA A receptor model, and observe their effect on neuronal spiking. Our results indicate that modifications of critical parameters at the molecular subsynaptic level may have a significant impact at the dendritic and neuronal levels. In parallel, these results illustrate the abilities of our modeling platform to successfully capture the events and observables at different scales, and predict neuronal firing based on perturbations at the molecular level.

II. METHODS

In our quest towards a better understanding of the mechanisms underlying nervous system function, the spatio-temporal hierarchical complexity can be subdivided as
The organization of these systems composes the nervous system. Ultimately, the structured compartments into a cell. The fourth level is the molecular level. This is the level where biochemical reactions, ion exchanges and diffusion, and protein/protein interactions occur. Above this, the second level consists in the spatial clustering of some of these molecular events, e.g. at a presynaptic terminal, which incorporates all the events taking place in this spatially defined compartment. The third level consists in the integration of all the subcellular compartments into a cell. The fourth level is the structured organization of cells into cellular networks. Right above this, those networks are organized into subsystems (i.e. hippocampal subfields or cortical columns), which are then compounded into anatomical structures of systems (i.e. hippocampus, prefrontal cortex); ultimately, the structured organization of these systems composes the nervous system.

A. Molecular level

At the biomolecular level (also referred to as the level of elementary models), the first challenge consists in channeling the computational power where and when it is needed most; to reach this goal, we calculate the dynamic evolution of elementary models using variable-step numerical methods. Since the models are highly dynamic, they exhibit periods of intense activity (in the tens of microsecond range), yet may remain silent for long periods of time. Using a solver with variable-step numerical methods decreases the computational demand at times when it is not needed while maintaining a high level of accuracy at all times.

B. From molecular to synaptic level: the EONS/RHENOMS platforms

As higher spatial levels are taken into account, elementary models become highly interconnected, i.e., they depend on each other to determine their temporal evolution. To take into account this high level of inter-connectivity and inter-dependence, we use the asynchronous event-constrained communication protocol described in detail in [5] and integrate both excitatory and inhibitory synaptic inputs.

The EONS/RHENOMS modeling platforms we have developed contain a very large number of complex and highly interconnected models, represented by hundreds to thousands of differential equations. These models simulate synaptic function in the presynaptic terminal, in the synaptic cleft (incorporating diffusion processes [6], uptake and astrocytic modulation) and in the postsynaptic spine for both glutamatergic and gabaergic synapses (for more details on the elements contained in the platform, read [7], [8]). All elementary models are written in the Systems Biology Markup Language (SBML) standard. The simulation engine in the synaptic platform is based on the event-constrained asynchronous principle described above, allowing us to reach reasonable computation speeds while maintaining acceptable accuracy.

C. From synaptic to neuron and extension to the network level

To allow for efficient integration of these levels, we elected to combine well-established modeling tools – each in its area of proficiency (level), and to define a bidirectional communication protocol in such a way that they can perform their calculations in parallel and communicate with each other as the simulation evolves. At the molecular and synaptic levels, we use the EONS integrated synaptic modeling platform that we developed; for the rest of the neuron, we use the NEURON simulator; communications between EONS and NEURON are handled using a protocol that we developed based on MPJ express [9] on the Java side, and Python for NEURON.

The framework presented is implemented on our high performance cluster and can be directly extended to network level simulations (Fig. 2). Indeed, synapses (connection points between neurons) can be configured as either an entry point in which input signals can be entered in the system, or exit points, allowing an action potential generated by a neuron to be sent to another layer of neurons. This structure allows complete flexibility in terms of network connectivity (in parallel or series) with minimal overhead.

III. RESULTS

To illustrate the utilization of our modeling framework, we investigated how perturbations at the molecular level impact observables at higher levels. As a concrete example, we modified kinetic parameters of the NMDA receptor model to simulate application of the NMDA receptor antagonist AP5 [10] and the application of a GABA A receptor antagonist. Both compounds are considered at IC50 concentrations (concentrations at which the amplitude signal reaches 50% of its maximum value). The stimulation protocol consisted in presenting a train of action potentials with random interpulse intervals at a mean frequency of 10 Hz as presynaptic input on both glutamatergic and GABAergic synapses; our observable readouts were molecular, synaptic (excitatory postsynaptic current and voltage), and neuronal (somatic potential and firing pattern). The kinetic model of the NMDA receptor we used is a modified version of the model.
The kinetic model for the GABA A receptor is the one presented in [13]. The NEURON model used in our simulations is a CA1 pyramidal cell described in [12], in which the synaptic currents are integrated along dendritic branches (112 glutamatergic synapses in the stratum radiatum area, all receiving the same presynaptic input, and 14 GABAergic synapses located close to the soma). The resulting somatic voltage was computed in four conditions: the control (no modulator), with IC50 concentration of the NMDA receptor antagonist AP5, with a similar 50% decrease in GABA A receptor current amplitude and both modulators combined. Fig. 3 displays the percentage of inhibition of the NMDA-R in response to applications of different concentrations of AP5. The concentration of AP5 we apply for the results presented here is 100 microM.

Results obtained at the soma of the postsynaptic neuron underscore the high levels of non-linearities that arise when modeling various aspects of neuronal integration. Decreases in NMDA receptor conductance at the molecular level, once combined with other ionotropic receptor currents and integrated along the dendritic tree and the soma induce a radical decrease in neuronal excitability (Fig. 5C with 2 spikes versus Fig. 5B with 9 spikes for the control condition). Adversely, when the GABA A receptor is antagonized at IC50 concentration of antagonist (without modulation on the glutamatergic synapse), the postsynaptic spiking activity increases (Fig. 5D with 14 spikes). When both modulators are applied, the number of spikes returns to a value close to the control condition (8 spikes, Fig. 5E), but with a very different, more regular, spiking pattern.

IV. CONCLUSION

We herein outlined the main principles of our modeling approach that incorporates complex non-linear dynamics ranging from subsynaptic biomolecular level up to the neuron level. Our modeling approach uses adaptive levels of detail concepts emphasizing (i) variable step numerical method, (ii) event-constrained asynchrony and (iii) temporal relaxation. Utilization of these methods allowed us to successfully incorporate highly detailed molecular mechanisms and model up to the neuron level; the structure of the framework should provide sufficient flexibility for a straightforward extension towards network level.

We provided an example of utilization of our approach in the determination of the effects of perturbations of parameters at the molecular level in excitatory (glutamatergic) and inhibitory (gabaergic) synapses on the
functional properties observed at the neuronal level. One useful direct application of our approach is the study of the effect of drugs (or combinations thereof) on the nervous system, as it provides for the integration of the effects at the molecular level into a multi-scale pathophysiological modeling framework. In the example presented above, our results show how a NMDA receptor antagonist could decrease spiking activity. This is reversed using a GABA A receptor antagonist, but results in a completely different spiking pattern.

Future perspectives of this work consist in (i) testing the modeling framework in a network simulation to verify our ability to investigate network-level changes and (ii) further increasing the temporal range to include slower mechanisms (i.e. long term potentiation and signal transduction). In parallel, as the levels of spatial and temporal complexity increase, it will become crucial to develop a multi-scale, multi-objective optimization framework to facilitate calibration of all models and parameters.

REFERENCES